
RLHF Mathematics and Intuition in Substantial

Detail

Evan Dramko

July 2025

1 Introduction

Reinforcement learning from human feedback (RLHF) has developed into an
integral part of the LLM training process. Unlike classic supervised learning
which focuses only on accuracy, RLHF allows the engineer to train human pref-
erence as an aspect of the model. Due to this, it is often said in literature that
RLHF should be used not when training for ‘correctness”, but rather training
for subjective quality of response.

Consider the motivating scenario where a LM has been trained on a massive
corpus of data. The data however, reflects information, biases, and response
templates that the engineer does not want to be present in the model’s re-
sponse. Instead, the user has a small corpus of sample prompt-answer pairs
that they have ranked according to their “goodness”. If using supervised learn-
ing, a sample prompt-answer pair would need to be generated for nearly every
possible unsatisfactory response that the LM could give. Instead, RLHF cre-
ates a manner that the engineer’s preference can be applied to every potential
prompt-answer pair without having to create a sample data point for each spe-
cific input.

An important note: there are many variants of RLHF. I am showing the base
algorithm here. A common modification is some practitioners prefer to disregard
the KL-divergence component and instead clip update sizes. Some new research
has moved away from PPO loss in favor of GRPO and other variants.

1.1 Assumed Knowledge

While we cover the mathematics of RLHF in great detail, we do assume that the
reader has mathematical maturity, familiarity with deep learning, and is broadly
familiar with reinforcement learning (RL). The reader should feel comfortable
with the idea of a policy, value function, state-action pairs, etc.

Throughout the sections, we will often denote the mathematics as if the
update is being done on a single example at a time for clarity. It can, of course,
be batched. To do so, one must adjust the dimensions referenced to account for
the addition of the batched sequences.

1

2 How RLHF Works

We can break down RLHF into five main steps. A detailed analysis of them
is provided in the following subsections. Since we are reviewing how RLHF
is used right now, we will consider an natural language processing (NLP) use
case with a decoder based model. We will denote a prompt as x, a response
as y, and will write xy to denote a prompt-answer pair. In total, the set of
all generate prompt and answer pairs is denoted X,Y . Importantly, remember
that in natural language processing (NLP) contexts, the state of the system is
defined as xy, therefore the MDP the RL process in modeling has an incredibly
large number of states.

For clarity, we list the full procedure in Algorithm 1, and detailed analysis
of each major step is provided in the following subsections.

Algorithm 1 Batched update step of RLHF

Require: X
Require: RM(x,y) ∈ R
Require: V (x) ∈ R
Require: πref , πθ

Y ← πθ(X)
KL(X,Y) ≈

∑
(x,y)

∑
t [ln(πθ(y|xyi<t)− ln(πref (y|xyi<t)]

A(xy)← [RM(xy)− β ·KL(xy)]− V (x)
c(x,y)← exp

[
ln(πθj (y|x))− ln(πθj−1

(y|x))
]

LPPO ← clip(c(x,y)) ·A(xy)
LV = MSE [V (x), RM(xy)]
Lexpl = −

∑
t [πθ(yt|xyi<t) · ln (πθ(yt|xyi<t))]

L = LPPO + α1 · LV − α2 · Lexpl

backprop(L)

2.1 Sampling, Scoring, and Reward Model

Prior to beginning RLHF we create a duplicate of our model. We will keep this
version static and unchanged. It is referred to as the “reference model”, and
is used to establish a baseline for model performance. We denote this model
as πref . The other model that we keep active and will continue to update is
referred to as the “policy model” and is denoted πθ.

We draw a sample of prompts from our original dataset, and generate re-
sponses to each. We then ask users to rank each response, generating a numeric
score from these rankings. These prompts are then used to train a reward model,
RM , which outputs a numeric score showing the “goodness” of the response. 1.
We will leave the training of the RM as a different post.

1Higher numbers correspond to a better response

2

2.2 KL-divergence

2.2.1 Reaching the used form

In many RLHF setups, the KL divergence is used to constrain the model such
that it will remain “close” to the original reference model. This helps prevent
overfitting and unintended “gaming” of the RM. Recall that KL-divergence is
defined by:

KLdef (p||q) =
∫

p(x) · ln(p(x))
ln(q(x))

(1)

=
∑
x∈X

p(x) · ln(p(x))
ln(q(x))

(2)

Note that KL-divergence is not symmetric, and thus we use “||” instead of “,”
in its function notation. In RLHF, we approximate the KL-divergence as:

KL(X,Y) ≈
∑
(x,y)

∑
t

[ln(πθ(y|xyi<t)− ln(πref (y|xyi<t)] (3)

The careful reader will notice we do not have a p(x) term in our approxima-
tion. This term is actually implicit in the approximation. Since we are randomly
drawing samples, X, from our dataset, we get an estimate of p(x) just from how
often this prompt appears in our fine-tuning data. Also, note that:

ln(p(x))

ln(q(x))
= ln(πθ(y|x)− ln(πref (y|x) (4)

We prefer to calculate this term as the LHS of 4 rather than the RHS because we
can reuse the component terms later in the algorithm and save the calculations.

2.2.2 How to calculate logprobs

In order to calculate ln(π(y|xyi<t), when running each forward pass during
inference, record the logits over the vocab size. Then, applying a softmax to the
logits from each step provides a probability distribution. Take special care when
writing the code: the first token is usually a seed token: “<BOS>” and is fixed.
Therefore, it does not need have associated logits since it is never predicted.
Additionally, we disregard the logits indexed at the last token value, since the
sequence has ended and there is no next token. These logits are undefined.

2.2.3 Why KL-divergence makes sense

Recall that π(y|x) is the probability that y occurs from prompt x. It can
either be either a continuous or one-hot encoded probability, the mathematics
is the same. Notice that if we were to use native probabilities rather than log
probabilities, the likelihood of any response would be defined as:

3

πθ(y|x) = Πtπ(yt|xyi<t) (5)

→ 0 as t→∞ (6)

The use of log probabilities prevents this from happening in practice. While
the use of log probs is an artifact of the definition of KL-divergence and was not
user-designed specifically for RLHF, it is what allows us to have non-negligible
probabilities for our sequences.

2.3 Advantage Calculations

2.3.1 V - Value Function

V refers to the value function commonly seen in RL applications. It returns an
estimate for the value of a state as a whole. In this case, when we take V (x), it
gives a measure of the average reward we can expect from the responses to the
prompt x. The value for V can be hard to know deterministically. It would re-
quire calculating every response to a response to every single prompt, and taking
their weighted average. Instead, we approximate V through the use of a head
trained on the output of the LM. Every time we generate a prompt-response
pair, xy, we train V to match RM(xy) 2. The intuition is that by averaging
enough samples,

∑
i RM(xyi) will approximate V (x) well. In practice, we are

unlikely to see any specific xi more than once3, but under function approxima-
tion conditions and assumptions (i.e: smoothness of the mapping, sharing of
parameters, similarity of distinct xi,xj etc) with sufficiently large quantities of
xi we can see useful estimates V (xi) anyway.

Initially, it can seem confusing that V is trained using jointly with the rest of
the network. The most straightforward idea would be to use two separate losses
and optimizers: one for the policy and one for V . While this can work, empirical
results show training both on a shared loss often produces better results. The
intuition is that we want the encoder portion (part prior to the policy and value
head) to have a robust shared representation that captures all the meaningful
information about the problem. Control over the weighting factor for the loss
terms from the policy and value functions is essential to ensure proper training.
This approach is not universal however, many prefer to still separate the training
of V from the rest of the parameters to prevent “gaming” of the system. As is
often the case with RL, there is not a clear-cut procedure... each situation must
be considered individually.

2.3.2 Total Advantage

We calculate the “advantage” as: A(xy) = [RM(xy)− β ·KL(xy)] − V (x).
This is a measure of whether the policy function should incentivize or avoid this

2We often use MSE loss as the loss function
3Recalling that a state is defined by the exact sequence of tokens prior in the sequence.

4

type of response. As previously mentioned, in Section 2.1, the reward model,
RM(xy), gives a numerical estimate of how much the user likes (or will like)
the response 4. Here is where we subtract a weighted amount of the previously
computed KL-divergence (see Section 2.2) to penalize the model for straying
too far from the original parameters.

If we find that RM(xy) > V (x), then this means the generated response
was good, and the policy should be adapted to make generating this response
more likely. If RM(xy) < V (x), it means that this response was considered
bad, and the policy should avoid such patterns in its responses.

2.4 Policy Ratio

PPO is an off-policy method. This means that we collect the sample prompts
from the policy iteration πθj−1

, but we reuse this data for πθj . In order to handle
distribution shift, we add a correction term. Recall that the core premise of
updating RL agents is to calculate gradients based on the function

Ey∼πθ(·|·) [RM(·, y) · ∇θ ln(πθ(y|·)] (7)

When multiplying with the off-policy correction ratio, we can recover an equiva-
lent form for the PPO loss (although using Advantage rather than RM directly,
etc). Nonetheless, we do want to resample periodically, otherwise the shift can
overcome the correction term and lead to degraded model performance.

Normally, importance sampling correction would be written as the first RHS
below, but we prefer the second:

c =
πθj (y|x)
πθj−1

(y|x)
(8)

= exp
[
ln(πθj (y|x))− ln(πθj−1(y|x))

]
(9)

We prefer to use this format for the calculations as it aligns better with the
values we computed in Section 2.2 and allows us to reuse our computations.

2.5 Total Loss and Backpropagation

PPO loss: From this point we just apply the scaling factor of the off-policy
correction to the calculated Advantage to create the PPO loss. Note that we
have πθt appearing at multiple locations. Recall that we can expand the PPO
loss to become:

LPPO = clip(c(x,y)) ·A(xy) (10)

= clip

(
πθj (y|x)
πθj−1

(y|x)

)
· ([RM(xy)− β ·KL(xy)]− V (x)) (11)

= clip

(
πθj (y|x)
πθj−1

(y|x)

)
·

([
RM(xy)− β ·

∑
t

[ln(πθ(y|xyi<t)− ln(πref (y|xyi<t)]

]
− V (x)

)
(12)

4Creation of RMs is a whole separate topic!

5

This involves the policy πθ as part of the log-prob in two places: the off-policy
correction and the KL divergence. This directly affects the logits that the model
produces.

Value function estimation: We also have to train V using the values we
see from RM . This is done usually with MSE loss. This impacts the model
approximating V only, and does not impact the policy function (and thus not
the produced logits).

Exploration term: Lastly, we add an exploration term into the loss to en-
courage the model to try new responses. It is formulated as:

Lexpl = −
∑
t

[πθ(yt|xyi<t) · ln (πθ(yt|xyi<t))] (13)

which is the stochastic, discrete approximation of entropy for the system. We
want to encourage exploration (i.e: encourage entropy in generated responses),
so we want to increase the loss when entropy is low, and decrease it when entropy
is high. Thus, we add a negative scaled version of the entropy to the loss. We
emphasize this in the formula by writing: L = LPPO + ... + −1 · α2 · Lexpl.
This term also impacts the policy model πθ during backpropagation, giving us
a total of three instances where the policy function appears in our final loss.
Notably however, the KL-divergence in the calculation of Advantage does not
incur gradient tracking and backpropagation as the Advantage is calculated
offline. Some works have added a separate KL-divergence term into the loss
which does add to the computation graph.

It can be unclear how the information from the Reward/Advantage is being
used to update the model. After all, it does not contribute to backprop and
is not part of the computation graph. The key insight is that the off-policy
correction ratio, r, is a measure of the change of the parameters of the network,
and thus contains all the necessary information to update model weights. The
Advantage simply tells us how much we should continue to follow the change
proposed by the updated weights.

3 Glossary of Symbols

1. x: the prompt given to a LM

2. y: the LM generated response to a given prompt

3. πref : reference model: a frozen version of the pre-finetuning model

4. πθ: policy model: the model that is actively being matched to engineer
preferences

5. KL : the KL-divergence between πθ and πref

6

6. RM : reward model: the model that outputs a numerical score to represent
the engineer’s preference for each prompt

7. V : the value function for a given state. Do not confuse this with the Value
matrix from Q,K, V in attention calculations.

8. A: advantage : a numerical measure of how good or bad a response is
based on the estimates of the RM and V functions

9. c : importance sampling correction term : a correction since we are sam-
pling from the distribution of πref but the loss is computed using πθ

10. LPPO : the PPO loss corresponding to how well the model performed

11. LV : the loss used to train the value function

12. Lexpl : the loss used to encourage exploration

13. L : the total loss used to train the model

7

	Introduction
	Assumed Knowledge

	How RLHF Works
	Sampling, Scoring, and Reward Model
	KL-divergence
	Reaching the used form
	How to calculate logprobs
	Why KL-divergence makes sense

	Advantage Calculations
	V - Value Function
	Total Advantage

	Policy Ratio
	Total Loss and Backpropagation

	Glossary of Symbols

