
Deep Dive Into Attention: Intuition, Dimensions,

and Calculations

Evan Dramko

March 2025

Contents

1 Overview 1
1.1 Expected Background and Audience . . . . . . . . . . . . . . . . 1
1.2 Motivation for the Article . . . . . . . . . . . . . . . . . . . . . . 1
1.3 The Concept of Attention . . . . . . . . . . . . . . . . . . . . . . 2

2 The Calculations 2
2.1 Full Self-Attention . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Multiheaded Attention . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Extension to Cross Attention and Other Conditionings . . . . . . 5
2.4 Masking in Attention . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Modern Variations 6
3.1 Are There Other Types of Attention? . . . . . . . . . . . . . . . 6
3.2 Efficiency Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Low Rank V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 Overview

1.1 Expected Background and Audience

This article is intended for someone who is familiar with machine learning and
neural networks, and is learning about Transformers and Attention. The main
goal is to explain the details of the mathematics of Attention.

Since we are pursuing the calculations in detail, a reader will need an un-
derstanding of basic matrix operations and linear algebra, as well as familiarity
with denoting terms as being an element of a space (ex: A ∈ Ri×j).

1.2 Motivation for the Article

Since its release in the now famous paper: ”Attention Is All You Need”, the
Transformer architecture has become the basis of most modern neural networks

1



(NNs). While initially proposed for natural language processing tasks, it has be-
come widely adopted in other areas including: computer vision, computational
biology, graph processing, and many others. As the name suggests, the power
of the Transformer comes from its Scaled Dot-Product Attention mechanism.
Despite its widespread use, many practitioners are often “fuzzy” on exactly how
it works. Herein, we will discuss both the intuition behind Attention as well as
cover its computations in detail. One of the best ways to understand the me-
chanics of Attention is to focus on matrix dimensions; the dimensions at each
intermediate step in the computation provide insight into the abstract idea is
being represented.

1.3 The Concept of Attention

At a high level, Attention is computing an every-to-every interaction between
elements of the input sequences. Given input sequences of length n,m, Attention
computes all n · m interactions. This is done in two steps: 1) computing a
“strength of signal” between each component, and 2) learning the “meaning” of
each interaction.

For clarity, we will first cover full Self-Attention, then show how it is modified
to create Multi-Head Attention and Cross-Attention. With that in mind, lets
dive in to the calculations!

2 The Calculations

2.1 Full Self-Attention

Input to the Attention function is a sequence of n elements, where each element
is represented by a continuous vector of values. In the case of discrete elements,
they are often embedded into a fixed size continuous vector prior to being passed
into attention. We denote the dimension of this embedded vector as dX . These
embedding vectors are then stacked into a matrix, where the first index de-
notes the sequence element, and the second index denotes the component of the
embedded vector.

Now, take one such sequence X ∈ Rn×dX . First, we generate the three
primary components of the Attention computation: Q,K, V . We have trainable
matrices WQ,WK ∈ RdX×dk , and WV ∈ RdX×dv . Often, we choose dk = dv,
though it is not required. There is no special meaning behind dk, dv; they are
simply the amount of “information” that your model is allowed to work with
when computing its Attention score.

So, we compute:

Q = XWQ ∈ Rn×dk

K = XWK ∈ Rn×dk

V = XWV ∈ Rn×dv

2



The query matrix, Q, can be thought of as asking a question about the
data. The key matrix, K, is often thought of as the answer to the question, and
the value matrix, V , tells us what that question and answer pair mean to the
network.

Next, we compute the Attention Map (Map) as:

Map =
QKT

√
dk

∈ Rn×n

The Attention Map can be thought of as assigning a score to how much the
question and answer match for every possible pair of the n elements (hence its
existence in an (n, n) space). The division by

√
dk is a rescaling term, whose

purpose cannot be properly motivated until after the next step in the calculation.
As usual in machine learning, we want these values to be normalized between

0 and 1 to improve numeric stability in the calculations. Furthermore, we want
all the values to sum to 1, meaning the data is analogous to a probability
distribution. This helps interpretability, and prevents issues when we (later on)
applying masking. To normalize all values between 0 and 1, we apply a row-wise
(along the “key” dimension) softmax. Because we want each “question” to act
independently of each other, we normalize along the rows/queries independently
rather than normalizing across the entire matrix. Without any better notation
for this, we typically just use the word “softmax” to represent the function.

standardScore = softmax

(
QKT

√
dk

)
enforces:

∑
j

standardScorei,j = 1

and 0 < standardScorei,j < 1; ∀i, j

The division by
√
dK is a normalization factor derived from the expected

value of the entries of QKT. Given that Qi,j ,Ki,j are independently sampled
from a distribution with mean 0 and variance σ2, the expected variance of QKT

is dk · σ2. As dk → ∞, the variance grows to infinity. In modern NNs, where
scale is king, this becomes a problem. When applying softmax to a vector with
such high variance, it approaches a one-hot vector (all entries are 0 except for
one which is 1). Using one-hot vectors as the Attention Map would be best
described as: “Which other element is most important”, rather than “How does
each element impact the others”. In essence, we would lose the every-to-every
comparison and instead get a “most important - to - every” calculation.

Okay, lets recap so far: we used our data to condition question and answer
matrices, and then computed a score for how much each element in our se-
quence is answering the question. Now, we want to apply meaning to the
(question, answer) pair. To do this, we use the value matrix, V .

3



Output = standardScore× V ∈ Rn×dv

= softmax

(
QKT

√
dk

)
V

Through this step, we use a learned matrix to apply the “meaning” (V ) of
the answer (K) to the question (Q). Notice that we end with a matrix in Rn×dv ;
this corresponds to a value embedding 1× dv for each of the n elements in the
sequence.

Thus, we reach the final formulation of scaled dot-product attention, as can
seen in “Attention Is All You Need”.

2.2 Multiheaded Attention

Often, there are complicated relationships between elements of our sequence.
A single Q matrix may not be sufficient to capture all the “questions” needed.
While it is certainly possible to replicate the Attention module and run it many
times in parallel, this is quite slow. To address this, Multiheaded Attention was
introduced.

First we define an attention head as a set of independant attention calcu-
lations. This means that everything we have worked through up until now is
a single Attention head. Multiheaded Attention divides the full size Attention
head into smaller sub-heads (to match with literature, we will call them simply
“heads”. Each head/sub-head is an independent Attention head, just over a
smaller section of the data).

By convention, we rename dX to be dmodel. Then, we define the number of
heads as h. In most implementations (including the the pyTorch nn.MultiheadAttention),
all heads are forced to be the same size. Thus, h must divide dmodel. Now, we
set WQ,WK ,WV ∈ Rdmodel×dmodel . Then, as we do in the single head case, we
compute:

Q = XWQ ∈ Rn×dmodel

K = XWK ∈ Rn×dmodel

V = XWV ∈ Rn×dmodel

Now, we break from the single head setup. After computing Q,K, V , we
split them into h heads along the dmodel (embedding) dimension. This allows
each head to operate on a different portion of the input, and specialize to the
values there rather than having to handle the whole embedding. We redefine
dk to be the size of each head, thus dk = dmodel

h . Then, each of the h heads has
the shape:

4



Qi ∈ Rn×dk

Ki ∈ Rn×dk

V i ∈ Rn×dk

We perform attention as normal for each head, calculating: QiKiT ∈ Rn×n.
We apply row-wise softmax and rescale just like we did before, then perform
matrix multiplication by V i. This creates:

Output = standardScore× V ∈ Rn×dk

After doing this in parallel for all h heads, we have h matrices of size (n, dk).
We concatenate them to create a single matrix of size (n, h× dk) = (n, dmodel).
Finally, multiplication by a projection matrix of size (dmodel, dmodel) yields the
final output of size (n, dmodel), which is the same size that we had in single
headed Attention.

2.3 Extension to Cross Attention and Other Condition-
ings

Now that we have covered the details of Self-Attention, how can we derive Cross-
Attention from it. Fortunately, the answer is very easy! Instead of conditioning
K on X, we use a different matrix X ′. In an encoder-decoder framework with
cross-attention in the decoder, X ′ would be taken from the encoder.

We can also extend this to other cases. If we want a question matrix Q
or values matrix V that doesn’t depend on our input data X, we can instead
remove the XWQ or XWV step, and learn Q or V directly. (If you are using
the pyTorch nn.MultiheadAttention module, you can use any constant matrix
(like that of all 1s) as the argument to the respective parameter.)

2.4 Masking in Attention

In some cases, we do not want to allow every element in the sequence to influence
every other one. While there are many different kinds of masking, we consider
the illustrative example of “causal masking”. In next token prediction during
text generation you do not want to allow future words to impact previous ones
(they haven’t been spoken/written yet!). To prevent this, we zero out any values
in the Attention map that we do not want to influence the calculation. This
is referred to as “masking” the Attention mechanism. It should be noted that
this does not “weaken” the effect of any word unfairly, because the row-wise
softmax will standardize the total score for every element.

5



3 Modern Variations

People have improved upon this mechanism to create specialized variants. Some
of the most common variants are included throughout this section.

3.1 Are There Other Types of Attention?

Yes! Scaled dot-product attention was not the first type of attention proposed.
Most notably, Bahdanau Attention and Luong Attention appeared a few years
prior. In fact, Dot-Product Attention itself appeared prior to “Attention Is All
You Need”; it was identical to Scaled Dot-Product Attention but without the
normalization by

√
dk.

3.2 Efficiency Concerns

It is worth noting that the number of interactions in Self-Attention is O(n2).
In very long context windows (when n is large), this can become prohibitively
expensive. Additionally, there are alternatives that work better in distributed
training of NNs over many GPUs.

Notable variants addressing these concerns are: Ring Attention, FlashAtten-
tion (all one word), Multi-Query Attention, Nystrom attention, and the afore-
mentioned Bahdanau attention.

3.3 Low Rank V

Low rank factorizations of a matrix are the decomposition of a large matrix into
the product of two smaller matrices. In many cases we will break V into a low
rank factorization by:

V = UA

where U ∈ Rn×r and A ∈ Rr×dk , and r << n. The following table breaks
down the memory and compute costs of making this change:

Memory Computations
V n · dk n3

UA (n · r) + (r · dk) n2r + nrdk

6


