
ADAPT: Lightweight, Long-Range Machine Learning Force Fields

Without Graphs

Evan Dramko1, Yihuang Xiong3, Yizhi Zhu2,3,4, Geoffroy Hautier ∗2,3,4, Thomas Reps5,
Christopher Jermaine1, and Anastasios Kyrillidis †1

1Department of Computer Science, Rice University, Houston, TX, USA
2Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA

3Rice Advanced Materials Institute, Rice University, Houston, TX, USA
4Thayer School of Engineering, Dartmouth College, Hanover, NH, USA

5Department of Computer Sciences, University of Wisconsin–Madison, Madison, WI, USA

Abstract

Point defects play a central role in driving the properties of materials. First-principles meth-
ods are widely used to compute defect energetics and structures, including at scale for high-
throughput defect databases. However, these methods are computationally expensive, making
machine-learning force fields (MLFFs) an attractive alternative for accelerating structural re-
laxations. Most existing MLFFs are based on graph neural networks (GNNs), which can suffer
from oversmoothing and poor representation of long-range interactions. Both of these issues are
especially of concern when modeling point defects. To address these challenges, we introduce the
Accelerated Deep Atomic Potential Transformer (ADAPT), an MLFF that replaces graph rep-
resentations with a direct coordinates-in-space formulation and explicitly considers all pairwise
atomic interactions. Atoms are treated as “tokens,” with a Transformer encoder modeling their
interactions. Applied to a dataset of silicon point defects, ADAPT achieves a ∼ 33% reduction
in both force and energy prediction errors relative to a state-of-the-art GNN-based model, while
requiring only a fraction of the computational cost.

1 Introduction

First-principles computations offer a powerful way to compute and predict materials and molecular
structure and energetics. However, these physics-based approaches have a substantial computa-
tional cost. Machine learning force fields (MLFFs)—also referred to as machine learning inter-
atomic potentials (MLIPs)—present a computationally efficient alternative. MLFFs often exhibit
runtimes orders of magnitude lower than Density Functional Theory (DFT), making them increas-
ingly considered in materials-discovery pipelines. MLFFs leverage large datasets to build a function
approximating the original DFT calculations.

State-of-the-art MLFFs are often graph-based and equivariant neural networks (GNNs) [1, 2],
excelling on bulk datasets and many chemistry tasks [3–12]. GNNs often excel when training data is
scarce; exactly the situation with expensive DFT trajectories. GNN MLFF are experiencing intense
and rapid developments with for instance the introduction of specialized attention mechanisms [6,
13] and higher-order information in message passing [3].

∗Corresponding author: gh55@rice.edu
†Corresponding author: ak85@rice.edu

1

mailto:gh55@rice.edu
mailto:ak85@rice.edu

GNNs have been considered to compute point-defect properties, which are usually simulated
on a large periodic supercell with an isolated defect center. The first approaches focused on fitting
GNNs to defect-formation energies data [14, 15], but more recent work has used MLFFs to com-
pute forces and accelerate first-principles atomic relaxation [16]. However, challenges in directly
applying GNNs to point defects have been raised. For instance, one work [17] suggested modify-
ing GNNs to focus on the local defect region to combat oversmoothing [18]. We also note that
defect computations typically involve large supercells of hundred to thousands of atoms, and are
computationally demanding for the message-passing algorithms used in GNNs. Recent work [19]
showed success on a GNN “one-hop” initial-to-relaxed approach for defects in 2D materials. Such
an approach though might require prohibitive amounts of data [20–22] for use in complicated 3D
complex defect trajectories.

Consideration of only local interactions is inherent to graph architectures; however, non-local
interactions play a vital role in the structural formation of defects. Inspired by the success of
Transformers [23] in natural language [24], computer vision [25], and computational biology [26],
we explore an alternative to directly handle such relationships: a coordinate-based Transformer
with attention computed over all possible atom interactions, trained to predict per-atom forces
from raw Cartesian coordinates and atomic features. This new approach is referred to as Acceler-
ated Deep Atomic Potential Transformer (ADAPT), and is trained on a DFT database of defects
in silicon, primarily consisting of complex defects. We show that ADAPT achieves state-of-the-
art performance (both in energy and forces), outperforming pretrained universal MLFFs, such as
MACE [3] and MatterSim [5], as well as MACE retrained on the same data set. Further, ADAPT
demonstrates a training cost two orders of magnitude lower than message-passing architectures.

2 Results

In contrast to MACE [3] and related model architectures, ADAPT employs distinct networks for
predicting atomic forces and structure energies. As mentioned before, both proposed architectures
eschew graphs and inductive biases entirely, instead focusing on precise representations of geome-
tries. Our primary aim is to develop force and energy predictors tailored for defect computations,
with the longer-term objective of bypassing costly DFT relaxations altogether.

ADAPT adopts the now standard tokenization paradigm [27] from deep learning of breaking
inputs into sequences of tokens. Here, each token corresponds to a single atom, so a structure with
n atoms is represented by n tokens. Every token is initially a 12-dimensional vector containing:

(x, y, z, column, row, χ, rcov, Nval, Eion1 , EEA, ratom, Vmol),

where we define x, y, z as the coordinates of the atom, column is the atom’s group, row is the
atom’s period, χ is the electronegativity, rcov is the covalent radius, Nval is the number of valence
electrons, Eion1 is the first ionization energy of the atom, EEA is the electron affinity, ratom is the
atomic radius, and Vmol is the molar volume. These specific descriptors are used because they were
naturally present in the raw data. Determining the best set of descriptors remains an open problem.
ADAPT has been designed to predict the forces and energy for structures that are simulated on
computations in a supercell. We consider defect computations in silicon as our motivating example.
Full details on the training are available in Supplementary Material Section B.

2.1 Force-Prediction Methodology

Herein, we consider the model architecture used to predict per-atom force vectors, as shown in
Figure 1. It can be viewed as a function mapping each token to a corresponding force vector.

2

Embedding. Rather than working in the native 12-dimensional space, we embed each token into
a higher-dimensional space of size dmodel (a user-set hyperparameter). High-dimensional represen-
tations enable neural networks to map complex nonlinear dynamics into spaces where linear and
simple nonlinear transformations suffice to approximate the underlying oracle function1.

A multi-layer perceptron (MLP) [28] is used to learn the embedding transformation, and can
be represented as:

MLP(x) = Wkσ
(
Wk−1σ

(
. . . σ(W0x+ b0) . . .

)
+ bk−1

)
+ bk, (1)

where x ∈ R12 is the input token, σ is the element-wise ReLU operation,2, bj ∈ Rdout,j are the
trainable bias terms, and Wj ∈ Rdout,j×din,j are learnable weight matrices. Here din,0 = 12, and
Wk ∈ Rdmodel×dout,k−1 . The embedding MLP is applied independently to each token.

Figure 1: ADAPT architecture. Each of n atoms is embedded via an identically weighted MLP,
passed through a stack of Attention-based encoder blocks, and linearly projected from (n×dmodel)
to (n× 3) force vectors.

1The oracle function denotes the assumed true generative function of the real world from which the data originates.
2ReLU(x) = max(0, x)

3

2.1.1 Transformer Encoder

The embedded sequence is processed by k encoder blocks. Each block has the same structure but
distinct parameters. A block is defined by:

H1 = LN
(
Xin + Attn(Xin)

)
, (2)

H2 = FFN
(
LN(H1)

)
, (3)

Xout = LN(H2 +H1). (4)

The main components are:

(i) Layer Normalization (LN). This is used to ensure numeric stability in training, and prevent
the chaining together of multiplied terms from growing or shrinking rapidly. Given an input x ∈ RH ,
layer norm normalizes across feature channels:

µ = 1
H

H∑
i=1

xi, σ2 = 1
H

H∑
i=1

(xi − µ)2, (5)

x̂i =
xi − µ√
σ2 + ϵ

, yi = γix̂i + βi, i = 1, . . . ,H, (6)

where γ,β ∈ RH are learnable parameters and ϵ is a small constant for stability.

(ii) (Multiheaded) Scaled Dot-Produce Attention (Attn). In the model, this is the only
place where the tokens3 interact and influence each other. In multiheaded attention, each “head”
performs an Attention operation over a subset of the data. Given X ∈ Rn×dmodel (sequence length
n), each head i = 1, . . . , h is defined by:

headi = softmax

(
QiK

T
i√

dk

)
Vi, (7)

where
Qi = XWQi , Ki = XWKi , Vi = XWVi , (8)

with projection matrices WQi ,WKi ,WVi ∈ Rdmodel×dk . The raw similarity matrix QiK
T
i ∈ Rn×n

encodes pairwise token similarities. The row-wise softmax4 maps each row into a probability
distribution over tokens.

Outputs from all heads are concatenated and projected:

Attn(X) = Concat(head1, . . . ,headh)WO, (9)

with WO ∈ Rhdk×dmodel .

(iii) Feed-Forward Network (FFN). FFNs work on individual tokens independently, and do
not allow any interactions between tokens. They allow for expressive transformations of the token
beyond what Attention alone can capture. A position-wise MLP, applied identically to each token:

FFN(H) = W2ReLU
(
W1H

T + b1

)
+ b2, (10)

where
H ∈ Rn×d, W1 ∈ Rdff×d, W2 ∈ Rd×dff , b1 ∈ Rdff , b2 ∈ Rd.

3Recall each token corresponds to an atom.
4Softmax: softmax(zi) =

ezi∑n
j=1 e

zj

4

(iv) Dropout. Dropout randomly masks neuron activations (set to 0), resampled at each pass
during training. This has been shown to prevent models from overfitting to the data, and improve
generalizability. It is applied to the outputs of attention and feed-forward layers. Following conven-
tion, we exclude it from the equations for the model definition since it is only used during training
and not inference.

Force Projection. Finally, after the encoder blocks, forces are obtained by a linear projection:

ŷ = XencWout, Wout ∈ Rdmodel×3, (11)

producing per-token force vectors (fx, fy, fz). The resulting tensor has shape n × 3. Appendix C
covers standard Transformer computations in further detail.

2.1.2 Handling Imbalance in Scaling

In crystalline defects, we see that there is a substantial disparity between the scale of forces in the
local area of the defects, and in the bulk lattice. A similar imbalance occurs across atomic feature
magnitudes, where certain descriptors (see Section 2.1) differ by several orders of magnitude. Such
imbalance in the scale of features is known to cause issues in the training of NNs [29, 30]. This
disparity motivates the use of a specialized loss function, as discussed below.

Loss Function. Training requires a differentiable objective that captures the mismatch between
predicted and true atomic forces. A natural baseline is the mean-squared error (MSE). Plain MSE,
however, does not bias towards any one atom implicitly, even though domain knowledge tells us
that atoms nearest the defects dominate the crystal’s mechanical response.

To emphasize these critical regions, we introduce a new loss function: “importance-weighted
MSE.” In particular, we create an importance mask m ∈ Rn

+, where each of the n atoms, ai,
receives weight:

mi =
∏
j∈D

(
1 +

λ1

∥ri − rj∥2 + λ2

)
, D = {defects}, (12)

where D is the set of defect locations5, and ri is the coordinate vector for atom i. This is similar to
laws observed in nature, where the effect of many interactions decay as a power law of the distance
between them.6It is possible that other weighting rules perform well; we present one that worked
well for our training data. Hyperparameters λ1, λ2 are used to ensure numerical stability and to
“temper” the scaling. The resulting loss becomes:

L(ŷ,y) =
∑
i

mi

∑
j

(ŷi,j − yi,j)
2

Where y, ŷ are the actual and predicted forces for each of the atoms (indexed i) and across each
of the 3 components of the force vectors (indexed j).

where the force vectors predicted by the model is denoted ŷ, and we have actual force vectors y.
While this weighting produces comparable—but often slightly worse—L2 error as a plain MSE loss
function, we find that it performs better when we consider practical use of the network. Section
2.3 details this difference.

5The formulation used herein does not consider vacancies, but could easily be modified to do so if necessary.
6An alternative weighting would be ∑

ln
1

∥ri − rj∥2 + λ2
. (13)

We experimented with Eq. (13), but found that for silicon defects Eq. (12) gave better results. It is possible that Eq.
(13) would perform better in some applications.

5

2.2 Energy Prediction

We train a separate formation energy-predictor model to complement the MLFF. For this task,
we consider three distinct architectures: (1) a decoder E, (2) a multilayer perceptron (MLP) 2.1,
and (3) an MLP+residual network. In each case, the model receives only the atomic structure
and returns an estimated crystal energy. Architectures (1) and (2) serve as natural baselines; the
decoder as a single-output is the natural extension of the encoder framework, and the MLP is a
widely used approach [31–33]. Architecture (3), however, substantially outperforms both, and we
adopt it as our primary design.

2.2.1 MLP+Residual Architecture

Residuals connections, where the input and output of a layer are added together, have become
widespread in ML literature. It has been noted that the residual architecture bears striking resem-
blance to Euler integration [34, 35] making it a common choice [36–38] when considering modeling
physical systems which are governed by differential equations. The architecture of a MLP with
residual connections for raw input tokens x is:

t0 = σ(W0x+ b0)

h0 = LN(P0t0 + t0)

t1 = σ(W1h0 + b1)

h1 = LN(P1t1 + t1)

...

ŷ = Wkhk + bk

where Wi,Pi,bi are learnable weight matrices/vectors of any mathematically valid dimensions.
Dropout 2.1.1 is applied after each ReLU activation function σ, and all other notation matches
that used in Section 2.1.1. Unlike Transformers, MLPs and MLP+residuals, require fixed-length
inputs. Based on the structures present in our data, we pad7 every structure to 220 atoms before
feeding it to the network. The selection of 220 atoms stems from the regular Si lattice box in the
dataset having 63 = 216 atoms, and allowance for the inclusion of dopants. For larger systems, the
energy-predictor model can be retrained or fine-tuned with a higher maximum length rather than
truncating atoms.

2.2.2 Model Selection and Comparison

Table 1: Selection Performance

Information L2 Error

Decoder 23.5508
MLP Only 50.3728
MLP + residual 11.1683

To quantify performance, we train each candidate for 200
epochs, save the weights from the best validation step, and
evaluate on the test set. The results are shown in Table 1.

The MLP+residual achieves the lowest error, justifying its
selection as the recommended architecture. After adopting it,
we further refine the model with an additional 200 epochs of
training until convergence.

7“Padding” refers to the creation of dummy atoms where all values are 0.

6

Selected ADAPT Force Predictions

(a) Test Sample 91 (b) Test Sample 80 (c) Test Sample 51

Selected Retrained MACE Force Predictions

(d) Test Sample 91 (e) Test Sample 80 (f) Test Sample 51

Figure 2: Side-by-side comparison of outputs. Top row: ADAPT. Bottom row: MACE retrained
on the data used to train ADAPT. Predicted forces are shown in black, actual forces are shown in
red.

2.3 Numerical Results

The primary criterion for comparing MLFFs is accuracy in force and energy prediction, typically
measured by L2 or MAE error. We benchmark ADAPT against two state-of-the-art models: MACE
[3] and MatterSim [5]. To ensure comparability, we train both MACE and ADAPT from scratch
on a dataset of 6,082 silicon defect DFT trajectories from our previous works, which contains both
simple and complex defects with a total of 56 elements[39, 40]. Only charge neutral defects are
considered in this work. Details of DFT calculations are provided in Supplementary information.
All testing cases are complex defects. We additionally report results from previously benchmarked
MACE models[41]. For MatterSim, which is positioned as a large-scale foundation model, retraining
is computationally prohibitive; we therefore evaluate using its publicly released checkpoints. All
models are tested on 100 structures whose trajectories were not included in training.

Recall that the primary motivation for MLFFs is to generate relaxation trajectories. Metrics
such as L2 loss of predicted forces and energies are a proxy used to compare MLFFs, but they are not

7

the main goal. In practice, the decisive measure of MLFF capability is its performance in the meta-
stable structure-determination pipeline, diagrammed in Figure 3. To this end, we do not evaluate on
full trajectories because L2 error can be misleading in the latter steps of crystalline-defect structure
relaxation. When atomic forces are near zero, L2 often favors trivial or uninformative predictions.
For example, the zero vector, 0⃗, can achieve lower error than nontrivial force predictions—even
though it is not helpful in practice. This phenomenon occurs because most atoms in the bulk
lattice undergo negligible displacement, allowing a model to minimize error by suppressing all
motion across the lattice, at the cost of missing the subtle, yet critical, displacements that govern
structural evolution.

Figure 3: Predictor (Structural Relaxation) Loop

In practice, however, MLFFs and relaxation procedures are often tolerant to small perturbations
in the bulk lattice. Predictions typically exhibit small stochastic deviations, yet these are often
self-correcting over successive relaxation steps. The practical utility of MLFFs lies in their ability to
capture the significant atomic-force vectors that drive structural rearrangements. By evaluating on
candidate structures from the beginnings of trajectories rather than full trajectories, the standard
L2 metric better reflects practical utility for defects. These initial configurations often contain
larger force magnitudes, reducing the advantage of trivial predictions.

Force Predictions. Table 2 shows that the small ADAPT configuration (dmodel = 256, dff = 512,
80 epochs) outperforms its larger counterpart (dmodel = 512, dff = 1024, 750 epochs). The larger
configuration exhibited overfitting, indicating that the smaller model already distilled nearly all
available information from the data. Accordingly, no further model training on the same inputs is
likely to achieve a meaningful performance gain8.

8Under the assumption of no additional inductive biases.

8

Results are summarized in Table 2: ADAPT achieves a 33% error reduction relative to retrained
MACE, and far outperforms the strongest pretrained model. Scatter plots of force and energy errors
across all predictions are shown in Figure 4, and examples showing the effect on selected structures
are included in Figure 2. The accuracy in forces obtained with ADAPT is around 0.01 eV/A as
MAE. This is in the order of magnitude of the stopping criteria for many atomic relaxation within
DFT including in our data set. This indicates that ADAPT could be a good surrogate to DFT
relaxation and at least provide useful pre-relaxation.

Energy Predictions. We also show that the ADAPT defect formation energy-predictor model
produces performance superior to both MACE and MatterSim. A table of results is given as Table
2, and scatter plots showing the results are given in Figure 5. We achieve near identical error to
MatterSim 5M—the best of the existing energy predictors—after 200 epochs, and reach our final
result—with a better than 30% reduction in MAE error over MatterSim 5M—after 400 epochs.

2.4 Computational Efficiency

Force Predictions. An advantage of the ADAPT architecture is its computational efficiency.
Training Small ADAPT required approximately 2.24 minutes per epoch on a single NVIDIA A100,
and converged after 80 epochs (totaling 3 compute hours). In comparison, retraining MACE
required 8.5 minutes per epoch for 300 epochs on 16 NVIDIA A100s, amounting to 680 compute
hours: more than 227× the amount of compute used to train ADAPT’s force-prediction model.
The compact design of ADAPT permits training on commodity hardware, including workstations
and even consumer-grade laptops equipped with GPUs,9 thereby significantly reducing hardware
requirements for adoption. This accessibility is consistent with the overarching objective of the
MLFF literature: to accelerate structural determination by reducing dependence on large-scale
computational resources.

These improvements are attributed to the departure from graph-based architectures. Graph
neural networks inherently involve sparse operations, which are not easily expressed in the dense
linear algebraic form favored by modern accelerators. Consequently, graph-based models typically
exhibit lower hardware utilization due to sparse operations, which lack the extensive optimization
and backend support available with dense-matrix operations [42]. By forgoing graph representations
and adopting architectural paradigms widely developed in natural-language processing and com-
puter vision—where such operations benefit from extensive backend and library support—ADAPT
achieves markedly higher computational throughput.

Energy Prediction. MACE generates energy predictions concurrently with force predictions
within the same forward pass, yielding identical timing characteristics for both quantities. ADAPT
trains an additional energy-predictor model, which required 1.93 compute hours on a single NVIDIA
A100 GPU. Model training was conducted for 400 epochs, with the duration of a single epoch being
29 seconds on the same hardware. When including this cost, training both ADAPT models takes
a total of 4.92 A100 hours, which is still more than 138× faster than MACE.

3 Discussion

On the Use of Separate Models. ADAPT employs separate models for force and energy
prediction, a design choice that carries several practical advantages. First, when only one quantity
is required, the corresponding model can be deployed independently, reducing both runtime and

9The authors successfully trained Small ADAPT on a personal laptop.

9

Table 2: Comparison with MACE on 100 Test Structures

Architecture
Force MAE Error

(eV/Å)
Energy MAE
Error (eV)

ADAPT Small 0.0126 0.5782
ADAPT Large 0.0136 −
MACE Retrained 0.0217 1.3129
MACE MP0a Large 0.0439 6.1012
MACE MPA-0 Medium 0.0349 2.0478
MACE OMAT-0 Medium 0.0283 3.2232
MatterSim 1M 0.0323 1.7430
MatterSim 5M 0.0335 0.8289

(a) ADAPT Model (b) Retrained MACE

(c) MACE OMAT-0 Medium (d) Pretrained MatterSim 5M

Figure 4: Scatter plots of predicted vs. actual forces across test structures.
Adherence to the line y = x is ideal.

10

(a) Small ADAPT Model (b) Retrained MACE

(c) MACE OMAT-0 Medium (d) Pretrained MatterSim 5M

Figure 5: Scatter plots of predicted vs. actual defect formation energies across test structures.
Adherence to the line y = x is ideal.

11

memory consumption. This could be particularly important for defect-MLFF, as defect properties
are often simulated in large supercells containing hundreds of atoms. This efficiency is relevant
for practitioners working on local workstations or clusters with limited hardware capacity. Second,
the separation increases modularity: force and energy predictors can be updated or retrained
independently, allowing the integration of datasets without both quantities present, and enabling
incremental model refinements without retraining the entire system.

We note, however, that separating forces and energies comes with important trade-offs. Because
no physical constraint links the two predictions, the resulting MLFF is non-conservative: forces are
not guaranteed to correspond to gradients of the energy surface. While recent studies suggest that
abandoning this constraint may yield more efficient neural networks and even improved accuracy
in some settings [43–45], we refrain from using such models for molecular dynamics simulations
[46, 47]. Moreover, modularity itself introduces limitations. Some applications—–such as the FIRE
optimizer [48]—–require forces and energies simultaneously. In these cases, a joint model is often
more parameter-efficient [49], as it learns a shared representation across tasks and can exploit
the inherent correlations between forces and energies, potentially improving generalization when
sufficient data are available10.

Architectural considerations also play a role in the two-model system. Unlike conventional
neural networks, which allow outputs to be flexibly defined, Transformer architectures are inherently
structured around token-to-token transformations. In ADAPT, where tokens correspond to atoms,
the energy of the structure constitutes a non-token, global output. Accommodating this mismatch
requires additional mechanisms. Extensive prior literature on this issue has yielded two main
strategies: i) the introduction of “special” tokens representing global properties [50, 51], and ii)
the use of specialized output heads appended to the model [52].

Given the limited training data available for silicon defects, it is not surprising [53–55] that a
simpler MLP with residual connections outperformed a Transformer decoder in this setting—see
Table 1. Nonetheless, the authors expect that, with sufficient force and energy data, Transformer
architectures augmented with specialized heads may provide a more scalable and accurate solution.
The design of such heads remains an active area of research, and identifying architectures that best
balance modularity, efficiency, and accuracy is an open problem.

Coordinates vs. Graphs. GNNs are the default backbone for modern MLFFs [3–6, 8] where
atoms define nodes, and atomic bonds or proximity determine edge placement. By encoding geo-
metric priors (permutation, rotation, and translation invariance), they incorporate strong inductive
biases that improve data efficiency [1, 56–58] and have been argued to stabilize relaxation trajec-
tories [13].

Representing continuous atomic interactions using discrete graph topologies introduces mis-
matches that can limit accuracy, especially in defects where long-range effects and precise geome-
tries are important. GNNs inherently restrict interactions to local regions, relying on network
depth to propagate forward information that is outside the interaction radius. This approach often
leads to over-smoothing and over-squashing [59, 60], where long-range signals degrade rapidly as
depth increases. Bulk crystal far from the defect core can substantially shape local defect struc-
tures. While long-range influences are less critical in many other chemical systems, neglecting
them in crystalline materials can cause large errors. The poor performance of GNNs on large pe-
riodic systems—an issue especially relevant in modeling crystalline defects—has been noted [13,
17]. Adding long-range interactions into graph architectures [6, 13] often leads to significant cost
in computation and model complexity. Thus, we arrive at the motivation for using an alternative

10Interpretations of neural-network representations should be made cautiously: the “black-box” nature of the
architecture makes it difficult to directly characterize internal dynamics.

12

MLFF strategy for modeling crystal defects in ADAPT, and a need recognized in [13, 17] as well.

Table 3: Full vs Local Interaction.

Allowed Interactions (%) Total L2 Loss

1.46 13.16∗

18.7 13.61†

51.3 11.13†

100 8.11∗

Radius is the percentage of every-to-every interactions
allowed during training and inference. Interactions are
controlled in Attention via Key-Structural Masks (Ap-
pendix D). Lower scores mean less error.
Note: ∗ training converged after 80 epochs; † training ran
for 200 epochs until convergence.

With the advent of Transformer architec-
tures and growing datasets, it is now feasible
to move away from hard-coded geometric pri-
ors and instead focus on explicit representations
of global distances and angles. ADAPT em-
ploys a Transformer encoder (Section 2.1, Ap-
pendix C) with full, unmasked self-attention,
enabling all-to-all comparisons between atoms
at each layer. This approach directly captures
non-bonded and long-range interactions with-
out depending on depth-based message pass-
ing. Although the model lacks explicit geomet-
ric equivariances, permutation invariance is in-
herent to unmasked attention, and experiments
show that translational and rotational invari-
ances can be learned sufficiently well from data. The importance of global attention is underscored
in Table 3: restricting attention to local neighborhoods—as in GNNs—drastically degrades perfor-
mance.

Accurate Representation of Geometries. Graphs excel at capturing connectivity, but do
not inherently encode exact distances or angles. To handle this deficiency, many GNN variants
supplement node and edge features with geometric data [1, 3, 4, 8, 13]; however, such information
must still be passed iteratively from neighbor to neighbor, which can introduce truncation and
discretization errors—an effect that compounds with increasing path lengths between atoms.

By contrast, a coordinate-based approach gives direct access to precise pairwise distances and
angles for all atoms in a single computation step. This approach not only avoids approximations
from multi-hop propagation, but also preserves geometric detail across all interaction scales.

Limitations and Future Directions. The ADAPT architecture is not inherently limited to
defect relaxation or force prediction. However, it remains an open problem to determine ADAPT’s
applicability to other problems including diverse bulk structures. Additionally, Transformers typi-
cally require substantial quantities of data [53–55], making ADAPT unsuitable for tasks with limited
training data. Our work however points out that GNN-free MLFFs can reach high accuracy.

Future directions include i) enforcing physical invariances algorithmically within both the ar-
chitecture and the loss; ii) extending training beyond silicon to encompass a wider class of defects
and materials; iii) developing force-field models that integrate physical constraints directly into the
model architecture; and iv) extending the framework to simulate charged defects in semiconductors.

4 Acknowledgments and Availability

4.1 Code and Data Availability

The datasets generated and/or analyzed during the current study are available in the “ADAPT
Stable” repository, [released after publication].
The underlying code and training/validation datasets for this study are available in the GitHub
repository: ADAPT-released and can be accessed via this link [released after publication].

13

4.2 Acknowledgments

This study was funded by NSF grants CCF-2212558, CCF-2212557, and CCF 1918651. The first
principles work has been supported by the U.S. Department of Energy, Office of Science, Basic
Energy Sciences in Quantum Information Science under Award Number DE-SC0022289. This
research used resources of the National Energy Research Scientific Computing Center, a DOE
Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231 using NERSC award BES-ERCAP0020966. The funder
played no role in study design, data collection, analysis and interpretation of data, or the writing
of this manuscript. Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors, and do not necessarily reflect the views of the sponsoring
entities.

This research was funded in part by: The Robert A. Welch Foundation (grant No. C-2118
A.K.); Rice University (Faculty Initiative award); NSF CAREER (award no. 2145629); an Amazon
Research Award; a Microsoft Research Award.

4.3 Competing Interests

All authors declare no financial or non-financial competing interests.

14

References

1. Bronstein, M. M., Bruna, J., Cohen, T. & Veličković, P. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478 (2021).

2. Reiser, P. et al. Graph neural networks for materials science and chemistry. Communications
Materials 3, 93 (2022).

3. Batatia, I., Kovacs, D. P., Simm, G., Ortner, C. & Csányi, G. MACE: Higher order equiv-
ariant message passing neural networks for fast and accurate force fields. Advances in neural
information processing systems 35, 11423–11436 (2022).

4. Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed
atomistic modelling. Nature Machine Intelligence 5, 1031–1041 (2023).

5. Yang, H. et al. Mattersim: A deep learning atomistic model across elements, temperatures
and pressures. arXiv preprint arXiv:2405.04967 (2024).

6. Frank, J. T., Unke, O. T., Müller, K.-R. & Chmiela, S. A Euclidean transformer for fast and
stable machine learned force fields. Nature Communications 15, 6539 (2024).

7. Poltavsky, I. & Tkatchenko, A. Machine learning force fields: Recent advances and remaining
challenges. The journal of physical chemistry letters 12, 6551–6564 (2021).

8. Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic
table. Nature Computational Science 2, 718–728 (2022).

9. Choudhary, K. & DeCost, B. Atomistic line graph neural network for improved materials
property predictions. npj Computational Materials 7, 185 (2021).

10. Schütt, K. et al. Schnet: A continuous-filter convolutional neural network for modeling quan-
tum interactions. Advances in neural information processing systems 30 (2017).

11. Batzner, S. et al. E (3)-equivariant graph neural networks for data-efficient and accurate
interatomic potentials. Nature communications 13, 2453 (2022).

12. Musaelian, A. et al. Learning local equivariant representations for large-scale atomistic dy-
namics. Nature Communications 14, 579 (2023).

13. Frank, J. T., Unke, O. T. & Müller, K.-R. So3krates: Equivariant attention for interactions
on arbitrary length-scales in molecular systems. arXiv preprint arXiv:2205.14276 (2022).

14. Rahman, M. H. et al. Accelerating defect predictions in semiconductors using graph neural
networks. APL Machine Learning 2 (2024).

15. Xiang, X., Soh, D. & Dunham, S. Exploration of deep learning models for accelerated de-
fect property predictions and device design of cubic semiconductor crystals. The Journal of
Physical Chemistry C 128, 8821–8829 (2024).

16. Mosquera-Lois, I., Kavanagh, S. R., Ganose, A. M. & Walsh, A. Machine-learning structural
reconstructions for accelerated point defect calculations. npj Computational Materials 10, 121
(2024).

17. Yan, Q., Kar, S., Chowdhury, S. & Bansil, A. The case for a defect genome initiative. Advanced
Materials 36, 2303098 (2024).

18. Li, Q., Han, Z. & Wu, X.-M. Deeper insights into graph convolutional networks for semi-
supervised learning in Proceedings of the AAAI conference on artificial intelligence 32 (2018).

19. Yang, Z. et al. Modeling crystal defects using defect informed neural networks. npj Computa-
tional Materials 11, 229 (2025).

15

20. Lopez-Rojas, A. D. & Cruz-Villar, C. A. Neural networks as an approximator for a family of
optimization algorithm solutions for online applications. Neural Computing and Applications
36, 3125–3140 (2024).

21. Amos, B. Tutorial on amortized optimization 2025. arXiv: 2202.00665 [cs.LG]. https:
//arxiv.org/abs/2202.00665.

22. Qiu, R., Sun, Z. & Yang, Y. Dimes: A differentiable meta solver for combinatorial optimization
problems. Advances in Neural Information Processing Systems 35, 25531–25546 (2022).

23. Vaswani, A. et al. Attention is all you need. Advances in neural information processing systems
30 (2017).

24. Zhou, C. et al. A comprehensive survey on pretrained foundation models: A history from bert
to chatgpt. International Journal of Machine Learning and Cybernetics, 1–65 (2024).

25. Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929 (2020).

26. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold
3. Nature 630, 493–500 (2024).

27. Webster, J. J. & Kit, C. Tokenization as the initial phase in NLP in COLING 1992 volume
4: The 14th international conference on computational linguistics (1992).

28. Cybenko, G. Approximation by superpositions of a sigmoidal function.Mathematics of control,
signals and systems 2, 303–314 (1989).

29. Khakhar, A. & Buckman, J. Neural regression for scale-varying targets. arXiv preprint arXiv:2211.07447
(2022).

30. Lee, J.-H., Lee, C. & Kim, C.-S. Learning multiple pixelwise tasks based on loss scale balancing
in Proceedings of the IEEE/CVF International Conference on Computer Vision (2021), 5107–
5116.

31. Jha, D. et al. Elemnet: Deep learning the chemistry of materials from only elemental compo-
sition. Scientific reports 8, 17593 (2018).

32. Liang, Y. et al. A universal model for accurately predicting the formation energy of inorganic
compounds. Science China Materials 66, 343–351 (2023).

33. Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep potential molecular dynamics: a scalable
model with the accuracy of quantum mechanics. Physical review letters 120, 143001 (2018).

34. Müller, J. On the space-time expressivity of ResNets. arXiv preprint arXiv:1910.09599 (2019).

35. Baggenstos, J. & Salimova, D. Approximation properties of residual neural networks for Kol-
mogorov PDEs. arXiv preprint arXiv:2111.00215 (2021).

36. Moghaddam, M. M., Parand, K. & Kheradpisheh, S. R. Advanced Physics-Informed Neural
Network with Residuals for Solving Complex Integral Equations. arXiv preprint arXiv:2501.16370
(2025).

37. Noorizadegan, A., Cavoretto, R., Young, D.-L. & Chen, C.-S. Stable weight updating: A key
to reliable PDE solutions using deep learning. Engineering Analysis with Boundary Elements
168, 105933 (2024).

38. Kashinath, K. et al. Physics-informed machine learning: case studies for weather and climate
modelling. Philosophical Transactions of the Royal Society A 379, 20200093 (2021).

16

https://arxiv.org/abs/2202.00665
https://arxiv.org/abs/2202.00665
https://arxiv.org/abs/2202.00665

39. Xiong, Y. et al. Computationally Driven Discovery of T Center-like Quantum Defects in
Silicon. Journal of the American Chemical Society 146, 30046–30056 (Nov. 2024).

40. Xiong, Y. et al. High-throughput identification of spin-photon interfaces in silicon. Science
Advances 9, eadh8617. eprint: https://www.science.org/doi/pdf/10.1126/sciadv.
adh8617. https://www.science.org/doi/abs/10.1126/sciadv.adh8617 (2023).

41. Batatia, I. et al.A foundation model for atomistic materials chemistry. arXiv preprint arXiv:2401.00096
(2023).

42. Liang, S. et al. EnGN: A high-throughput and energy-efficient accelerator for large graph
neural networks. IEEE Transactions on Computers 70, 1511–1525 (2020).

43. Klicpera, J., Becker, F. & Günnemann, S. Gemnet: Universal directional graph neural net-
works for molecules in Proceedings of the 35th International Conference on Neural Information
Processing Systems (2021), 6790–6802.

44. Neumann, M. et al. Orb: A Fast, Scalable Neural Network Potential. 2024. arXiv preprint
arXiv:2410.22570 33.

45. Liao, Y.-L., Wood, B., Das, A. & Smidt, T. Equiformerv2: Improved equivariant transformer
for scaling to higher-degree representations. arXiv preprint arXiv:2306.12059 (2023).

46. Bigi, F., Langer, M. & Ceriotti, M. The dark side of the forces: assessing non-conservative
force models for atomistic machine learning. arXiv preprint arXiv:2412.11569 (2024).

47. Jacobs, R. et al. A practical guide to machine learning interatomic potentials–Status and
future. Current Opinion in Solid State and Materials Science 35, 101214 (2025).

48. Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural relaxation made
simple. Physical review letters 97, 170201 (2006).

49. Zhang, Y. & Yang, Q. A survey on multi-task learning. IEEE transactions on knowledge and
data engineering 34, 5586–5609 (2021).

50. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding 2019. arXiv: 1810.04805 [cs.CL]. https://
arxiv.org/abs/1810.04805.

51. Alayrac, J.-B. et al. Flamingo: a Visual Language Model for Few-Shot Learning 2022. arXiv:
2204.14198 [cs.CV]. https://arxiv.org/abs/2204.14198.

52. Ouyang, L. et al. Training language models to follow instructions with human feedback 2022.
arXiv: 2203.02155 [cs.CL]. https://arxiv.org/abs/2203.02155.

53. Liu, Y. et al. Efficient training of visual transformers with small datasets. Advances in Neural
Information Processing Systems 34, 23818–23830 (2021).

54. Zhu, H., Chen, B. & Yang, C. Understanding why vit trains badly on small datasets: An
intuitive perspective. arXiv preprint arXiv:2302.03751 (2023).

55. Zhang, Y., Warstadt, A., Li, H.-S. & Bowman, S. R. When do you need billions of words of
pretraining data? arXiv preprint arXiv:2011.04946 (2020).

56. Ko, T. W. & Ong, S. P. Data-efficient construction of high-fidelity graph deep learning inter-
atomic potentials. npj Computational Materials 11, 65 (2025).

57. Kiechle, J. et al. Graph Neural Networks: A Suitable Alternative to MLPs in Latent 3D Medical
Image Classification? in International Workshop on Graphs in Biomedical Image Analysis
(2024), 12–22.

17

https://www.science.org/doi/pdf/10.1126/sciadv.adh8617
https://www.science.org/doi/pdf/10.1126/sciadv.adh8617
https://www.science.org/doi/abs/10.1126/sciadv.adh8617
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155

58. Oliva, M., Banik, S., Josifovski, J. & Knoll, A. Graph Neural Networks for Relational Inductive
Bias in Vision-based Deep Reinforcement Learning of Robot Control 2022. arXiv: 2203.05985
[cs.LG]. https://arxiv.org/abs/2203.05985.

59. Giraldo, J. H., Skianis, K., Bouwmans, T. & Malliaros, F. D. On the trade-off between over-
smoothing and over-squashing in deep graph neural networks in Proceedings of the 32nd ACM
international conference on information and knowledge management (2023), 566–576.

60. Rusch, T. K., Bronstein, M. M. & Mishra, S. A Survey on Oversmoothing in Graph Neural
Networks 2023. arXiv: 2303.10993 [cs.LG]. https://arxiv.org/abs/2303.10993.

61. Jain, A. et al. Commentary: The Materials Project: A materials genome approach to acceler-
ating materials innovation. APL materials 1, 11002 (2013).

62. Mathew, K. et al. Atomate: A high-level interface to generate, execute, and analyze compu-
tational materials science workflows. Computational Materials Science 139, 140–152. issn:
0927-0256. https://www.sciencedirect.com/science/article/pii/S0927025617303919
(2017).

63. Ong, S. P. et al. Python Materials Genomics (pymatgen): A robust, open-source python library
for materials analysis. Computational Materials Science 68, 314–319. issn: 0927-0256. https:
//www.sciencedirect.com/science/article/pii/S0927025612006295 (2013).

64. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations
using a plane-wave basis set. Phys. Rev. B 54, 11169–11186. https://link.aps.org/doi/
10.1103/PhysRevB.54.11169 (16 Oct. 1996).

65. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and
semiconductors using a plane-wave basis set. Computational Materials Science 6, 15–50. issn:
0927-0256. https://www.sciencedirect.com/science/article/pii/0927025696000080
(1996).

66. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979. https:
//link.aps.org/doi/10.1103/PhysRevB.50.17953 (24 Dec. 1994).

67. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple.
Physical review letters 77, 3865 (1996).

68. Deng, J., Guo, J., Xue, N. & Zafeiriou, S. Arcface: Additive angular margin loss for deep
face recognition in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (2019), 4690–4699.

18

https://arxiv.org/abs/2203.05985
https://arxiv.org/abs/2203.05985
https://arxiv.org/abs/2203.05985
https://arxiv.org/abs/2303.10993
https://arxiv.org/abs/2303.10993
https://www.sciencedirect.com/science/article/pii/S0927025617303919
https://www.sciencedirect.com/science/article/pii/S0927025612006295
https://www.sciencedirect.com/science/article/pii/S0927025612006295
https://link.aps.org/doi/10.1103/PhysRevB.54.11169
https://link.aps.org/doi/10.1103/PhysRevB.54.11169
https://www.sciencedirect.com/science/article/pii/0927025696000080
https://link.aps.org/doi/10.1103/PhysRevB.50.17953
https://link.aps.org/doi/10.1103/PhysRevB.50.17953

A Individual Contributions

Table 4: Author contributions by role (filled = contributed)

So
ft
w
ar
e.

D
om

ai
n.

M
et
ho
d

D
at
a
C
ur
.

M
A
C
E
.

W
ri
ti
ng

ED

YX

YZ

CJ

TR

GH

TK

Roles: Software.=Creation of project software and documentation; Domain.=Domain Knowledge; Method. =
Design of MLFF architecture; Data Cur.=Data Curation; MACE=Training of MACE; Writing=Writing and

Editing.

B Dataset Details

The DFT trajectories dataset contains both simple and complex defects in silicon, which correspond
to our previous works [39, 40]. The complex defects are in substitutional-interstitial configuration.
The defect elements in the dataset span most of the periodic table besides the noble gas, rare-earth,
and the ones that are difficult to implantable, giving in total 56 elements [40]. In this work, we
extract 252,240 number of single-point calculations of neutral charge defects from the relaxation
trajectories. The high-throughput defect computations were performed using the automatic work-
flows that are implemented in atomate software package [61–63]. The first-principles calculations
were performed using Vienna Ab-initio Simulation Package (VASP) [64, 65] with the projector
augmented wave (PAW) method [66]. All the calculations were spin-polarized at the Perdew-
Burke-Erzhenhoff (PBE) level[67]. Defect atoms were embedded in a Si supercell with 216 atoms.
520 eV cutoff energies were used for the plane-wave basis and the Brillouin zone was sampled with
single Γ. All the defect structures were optimized at a fixed volume until the ionic forces were
smaller than 0.01 eV/Å.

C Architecture Details and Hyperparameters

Transformer Details. A full writeup of the mathematics of Scaled Dot-Product Attention and
Transformers can be found at the following links:

• Attention: https://evandramko.github.io/files/attention.pdf

• Transformers: https://evandramko.github.io/files/transformer.pdf

19

Hyperparameters.

• ADAPT: We define the “small” model size by: [dmodel = 256, dff = 512, #-layers= 8, #-
heads= 8, dropout rate = 0.05] trained for 80 epochs. The “large” model size is: [dmodel = 512,
dff = 1024, #-layers= 8, #-heads= 8, dropout rate = 0.05] trained for 750 epochs. All training
was in single precision.

• MACE: The retrained version of MACE (v0.3.14, PyTorch 2.6.0) uses: num interactions=2,
num channels=256, max L=2, correlation=3, r max=5.0, trained for 300 epochs on single
precision (float32).

C.1 Evaluation At Different Levels

While L2 error is the conventional standard for comparing force predictions, we find that it is
insufficient to fully capture the dynamics of point defects in crystals. To perform a more appropriate
comparison, we use two complementary levels. (i) Model level (MLFF): accuracy of force and
energy predictions. (ii) Predictor level : quality of the final relaxed structure obtained by running
a geometry optimizer with the MLFF.

Model-Level Evaluation of Forces: When comparing candidate models, in addition to the
loss scores (see Section 2.1.2), we also consider the average angle and magnitude errors separately.
We use the dot product to calculate the angular error in degrees via11

angle(y, ŷ) = arccos

(
y · ŷ

||y||2 · ||ŷ||2

)
· 180

π
,

and we calculate the difference in magnitudes via

mag(y, ŷ) = |∥y∥2 − ∥ŷ∥2|

These results help to determine whether the model is genuinely learning the underlying dynamics
or artificially minimizing error by predicting uniformly negligible forces—knowing that in reality,
most of them will be close to zero.12 From a domain perspective, it is often more important
to predict the direction (angle) of the force correctly than its exact magnitude. Although this
angular-magnitude metric is differentiable and theoretically usable as a loss function for the MLFF,
in practice it is difficult to balance the angular and magnitude components effectively. Empirical
results show that angular-loss functions are often brittle and require significant engineering effort to
implement reliably [68]—a result borne out in our own experiments. In contrast, using a weighted
mean-squared-error (MSE) loss is simpler, more robust, and yields strong performance at both the
MLFF and Predictor (Structural-Relaxation) levels, making it the preferred choice. However, we
did use the angle-prediction performance of models to compare and rank different training runs
and different hyperparameter choices for our models.

Evaluation of Energy: The total energy of the crystal is represented with a single number,
making evaluation very easy. We use the common L2 distance metric.

Evaluation of Predictor (Figure 3): In order to evaluate the final result of the full relaxation
procedure, we use the well known SOAP and delta Q metrics. Other checkers (such as those which
check bond lengths) are also viable, although we do not use them in this work.

11In practice, we clamp the · arccos(·) to ensure that arccos is always operating on valid values. This detail is
omitted for clarity in the provided formula.

12In practice, many implementations of different models tended to produce near-zero results for all forces, and then
stop improving.

20

D Masking in Attention

When restricting interactions in Attention, we apply masks to the attention logit matrix

QKT ∈ RB×H×T×T ,

where B is the batch size, H the number of heads, and T the sequence length (number of tokens).
Masking is applied along the Key dimension (the columns), so that certain tokens cannot be
attended to. We use two types of masks:

1. Padding mask. To enable batching, all sequences are padded.13 Padding tokens must not
affect the model’s output, so we mask them out of the attention computation.

2. Restricted visibility (local radius). To study the effect of limiting each token’s visible
neighborhood, we compute a restricted attention mask. Allowed interactions are precomputed
from the L2 distances between raw coordinates, and then the same mask is applied to every
attention step in the forward pass.

Key masking mechanism. After computing QKT, all disallowed positions are replaced with
-inf. During the row-wise softmax, these entries become zero, ensuring that they cannot con-
tribute, regardless of the values in V . Consequently, masked tokens never influence the update of
valid tokens. Query values at masked positions can be arbitrary (“nonsense” numbers),14 but they
cannot affect non-padded tokens.

E Decoder

The natural extension of using an encoder to predict forces is to use a decoder to predict en-
ergy. While the encoder architecture produces a per-token output 2.1.1, the decoder architecture
produces individual outputs, like a scalar crystal energy, using a similar Attention/Transformer
based architecture. The decoder design we use starts with a stack of encoder layers like in the
force-prediction model 2.1.1, but instead of the final linear down-scaling, the stack is followed by
a decoder head. This head defines a “dummy” token, q, which is used to allow the calculations
to shrink the output to a constant size. This modification requires us to use a slightly different
notation; rather than having Attn as an function of a single variable, we denote it as a function of
three variables. Each is used (in order) to provide the conditioning of one of Q,K,V.

The Decoder architecture is formulated as:

M = encoder(X);

h0 = LN(q+ Attn(q,M,M));

h1 = LN(h0 + MLP(h0));

ŷ = Wh1 + b,

where the notation follows that used in Section 2.1.1, and dropout is applied after Attn and MLP.
Recall that M ∈ Rn×dmodel , and note that W ∈ R1×n. Although it is a matrix of shape q ∈
R

(1×dmodel) we denote it in lowercase vector form to make clear that it has only one non-trivial
dimension. We train both the encoder and decoder layers jointly.

13Padding means appending dummy tokens, typically all zeros, to make every sequence the same length.
14Some implementations explicitly zero them out after each attention layer for safety and clarity.

21

	Introduction
	Results
	Force-Prediction Methodology
	Transformer Encoder
	Handling Imbalance in Scaling

	Energy Prediction
	MLP+Residual Architecture
	Model Selection and Comparison

	Numerical Results
	Computational Efficiency

	Discussion
	Acknowledgments and Availability
	Code and Data Availability
	Acknowledgments
	Competing Interests

	Individual Contributions
	Dataset Details
	Architecture Details and Hyperparameters
	Evaluation At Different Levels

	Masking in Attention
	Decoder

