
Mathematics Details of Transformers In Depth

Evan Dramko

March 2025

Contents

1 Introduction 2

2 High-Level Architecture 2

3 Data Embedding and Positional Encoding 2

4 Encoder Block 3
4.1 Input . 3
4.2 Self-Attention and Residual . 3
4.3 LayerNorm . 4
4.4 FFN/MLP and residual . 4
4.5 Recap . 5

5 Decoder 5
5.1 Decoder Block . 5

5.1.1 Input Data . 5
5.1.2 Self-Attention + Residual + Norm 5
5.1.3 Cross-Attention + Residual + Norm 5
5.1.4 FFN . 6
5.1.5 Projection Into Vocabulary 6

5.2 Teacher Forcing . 6
5.2.1 What Is Teacher Forcing? 6
5.2.2 Issues and Solutions . 6

5.3 Autoregressive Generation . 7

6 Conclusion 8

1

1 Introduction

Since their introduction in 2017, Transformers have come to dominate the field
of deep learning. They, and similar architectures, are already near-ubiquitous
in natural language processing (NLP), computer vision (CV), and computa-
tional biology (compBio). Additionally, they are becoming increasingly used in
robotics, graph analysis and assorted physical science domains. Here, we will
cover in detail the computations involved in Transformers. We do not discuss
the high-level setup and use cases for them; however good articles for this type
of analysis are available here and here.

Throughout our discussion, we will reference Self-Attention without going
into it in detail; a deep dive into Self-Attention mathematics can be found in
another article on my website.

2 High-Level Architecture

Transformers can take a variety of different forms. Broadly however, they are
made of Encoder and Decoder blocks. We will consider the mathematics of each
in Sections 4 and 5 respectively.

While the original proposed Transformer architecture was an Encoder fol-
lowed by a Decoder, we often see models created as just an Encoder or Decoder
by itself. A diagram of the encoder-decoder architecture is included in 1a. Ad-
ditionally, a low-granularity listing of the steps in the Encoder and Decoder can
be seen by looking at the headings in the Table of Contents Sections 4 and 5.

3 Data Embedding and Positional Encoding

The Transformer architecture is used to handle a wide variety of situations and
data types, however, the calculations for the Transformer require input to be a
series of continuous-valued vectors. We must convert our data from its native
form into a sequence of “tokens” (fundamental discrete components of the input)
and represent each token with a vector of fixed length. The process of converting
the data into the discrete tokens in called “tokenization” and transforming
tokens into a continuous vector is called “embedding” the tokens. We call the
resulting vectors the “token embeddings”.

We also often add a Positional Encoding to the data. This is a small value
added to the embeddings so the model is able to identify the relative ordering
of the tokens.

The process of creating embeddings and positional encodings has become
quite advanced, and has spawned a whole field of research. We recommend
further reading if you are trying to create your own embeddings for your data.

2

https://medium.com/h7w/an-introduction-to-transformers-in-machine-learning-50c8a53af576
https://aws.amazon.com/what-is/transformers-in-artificial-intelligence/#:~:text=Each%20transformer%20block%20has%20two,the%20input%20when%20making%20predictions.
https://evandramko.github.io

(a) Transformer diagram (from “Atten-
tion Is All You Need”)

(b) Normalization axis in layerNorm (for
both Encoder and Decoder)

4 Encoder Block

4.1 Input

Assume we have input embeddings: X ∈ RB,n,dv where we have B examples in
our batch, a sequence length of n, and an embedding dimension of dv. Following
standard practice, we will continue to refer to the data as X as it passes through
the network. Following standard notation, note that X no longer refers
to a fixed input sequence, but is rather the label for the “data” as it
is processed by the network.

4.2 Self-Attention and Residual

We then perform Self-Attention on the embedding. The computations and
intuition of Scaled Dot-Product Attention is quite involved, so we will not cover
the computations of Self-Attention here. However, a very detailed analysis is
available here. The Attention module outputs attnScoreX ∈ RB,n,dv .

After Self-Attention is computed, we combine it with a residual connection,
thus we update X ← X + attnScoreX .

3

https://evandramko.github.io/files/attention.pdf

4.3 LayerNorm

Next, we perform layer normalization (LN). This performs normalization across
the feature channels 1 of the data. In the layer after LayerNorm, each token will
be independently processed. So, when we normalize along the feature channels,
we normalize each token individually.

Recall that our data is X ∈ RB,n,dv , so we are independently normalizing
each of B × n vectors of length dv. Figure 1b shows that we normalize the dv
values in each feature channel for each of the n tokens. Thus, each token gets
its own normalization value. The formula for this is:

LayerNorm(Xi,j) = γk ·
Xi,j,k − µi,j

σi,j + ϵ
+ βk

where each of the B · n different Xi,j ⇔ X[i, j, :] denotes the individual tokens
of the data, and µ, σ ∈ R1 are the mean and standard deviation of the values
of X along that token. γ, β ∈ Rdv are learnable parameters. The ϵ is a small
constant used to ensure numerical stability in the calculations, and is sometimes
actually used inside the calculation of σ by computing: σ =

√
σ2 + ϵ.

Notice that if we define a = X−µ
σ , then LayerNorm(X) = γ · a + β, which

is the same form as the formula for a linear layer.
Now, X ← layerNorm(X) ∈ RB×n×dv .

4.4 FFN/MLP and residual

Following layer normalization, feed-forward network (FFN) (a multi-layer per-
ceptron (MLP)) is applied to each token. Typically, we just have a single hid-
den layer (two weight matrices). While we could have any number of layers,
empirical results have found that the best tradeoff between time, accuracy, gen-
eralization, and storage space comes from the single hidden layer FFN.

We denote the dimension of the hidden layer as dff , so we have W1 ∈
R

dv×dff , and W2 ∈ Rdff×dv . Thus, it takes an input vector a ∈ Rdv , and per-
forms: a←W2(σ(W

T
1 a)) where here σ indicates the chosen activation function

(ReLU, tanh, etc).
Then, we apply the same W1,W2 and FFN to each token in our data. So,

we have:

X ∈ RB×n×dv

xi,j = X[i, j, :] ∈ R1×1×dv

xi,j ←W2(σ(W
T
1 xi,j)); ∀i, j

We also add a residual again at this stage. So, X ← X + FFN(X), and we
still have: X ∈ RB×n×dv .

1“Feature channels” refers to processing along each token.

4

4.5 Recap

This finishes one encoder block. Often, several of these blocks will be “stacked”
on top of each other to create a full encoder. Some models only use encoder
blocks; the most common example of an encoder only model would be BERT.

5 Decoder

As one might expect, when there is an encoder there is also often a decoder.
Unlike the encoder, the decoder part of a model is slightly different than just
stacking decoder blocks on top of each other (although that is certainly a part
of it!) This section covers the computations of the decoder block in detail, as
well as how we use decoders in practical deployment.

5.1 Decoder Block

5.1.1 Input Data

We assume that our data is already a series of embedded representations of
tokens (refer to 3, 4.1) and is of shape: X ∈ RB,n,dv where we have B examples
in our batch, a sequence length of n, and an embedding dimension of dv.

5.1.2 Self-Attention + Residual + Norm

This component is the same as the Self-Attention component in the encoder
block: We perform Self-Attention on the embedding. We do not cover the
computations of Self-Attention here, but a very detailed analysis of it is available
here. The Attention module outputs attnScoreX ∈ RB,n,dv .

After Self-Attention is computed, a residual connection is used, so we update
X ← X + attnScoreX ∈ RB,n,dv . We then perform layerNorm just as we did
in Section 4.3.

5.1.3 Cross-Attention + Residual + Norm

In an encoder-decoder model, we will compute Cross-Attention. This is not
applicable to a decoder only model, as it pulls values from the encoder. In the
case of a decoder only architecture (like GPT), simply skip this section and
continue on to the FFN section.

Here, we compute an Attention score between across the values in the en-
coder and the decoder (hence “Cross” Attention). For efficiency, we will pull
the Q values from the previous self-attention layer, and we only recompute
K,V based on the current data X. The intuition here is that we are looking
for the same thing as we did in Self-Attention, we are just now checking for
“information” from the encoder side of the model.

Following the computation of Cross-Attention, we will add a residual con-
nection. Thus, we find that X ← X+crossAttnScoreX ∈ RB,n,dv . Once again,
we perform layerNorm (reference Section 4.3).

5

https://evandramko.github.io/files/attention.pdf

5.1.4 FFN

This layer – or sub-layer more accurately – is computed in the same way as it
was in the encoder. We reference section 4.4 for details.

After each token is passed through the FFN layer, it remains in shape
R

B,n,dv .

5.1.5 Projection Into Vocabulary

Now, we have X ∈ RB,n,dv . We need to get from a representation of our tokens
as a continuous embedding of length dv into something we can interpret directly.
To do this, we multiply by a linear layer, WV of size dv, V where V is the size
of our vocabulary. Thus, we see:

X ← XWV ∈ RB,n,V

This gives us logits over the vocabulary size for each token. We apply a
softmax to turn the logits into a probability distribution.

5.2 Teacher Forcing

5.2.1 What Is Teacher Forcing?

When using a decoder for sequence-to-sequence tasks (like text generation) we
often use a method called Teacher Forcing to train the model.

In this method, we feed the entire sequence to the model, and mask off future
tokens during the attention. This ensures that future words cannot influence
their own prediction (otherwise this would be a lot easier!) 2. We then calculate
the loss from the prediction at each of the B,n steps to their actual values, and
perform backpropagation. In this way, we can train on the entire sequence
length in parallel.

The benefit of this sort of training compared to one-at-a-time token genera-
tion is that bad predictions earlier in the sequence will not affect the accuracy
of future predictions because the future token predictions are conditioned on
the actual data. This ensures that the best possible learning for each token in
the sequence occurs, and leads to faster convergence.

5.2.2 Issues and Solutions

An issue that arises with Teacher Forcing is exposure bias: during testing time
which is inherently sequential one-at-a-time generation, small errors in prior to-
ken predictions can compound over long-sequences and lead to highly inaccurate
results.

Another similar issue comes up with evaluating the model: the generated
sequence is always being “corrected” for each new time step which leads to
overinflated results.

2In this situation you already have the answer key for the next word prediction!

6

To handle these issues, we start with always using Teacher Forcing for train-
ing, and then slowly transition to using one-at-a-time token generation.

5.3 Autoregressive Generation

During inference time, decoder models produce a single token at a time, a
process called autoregressive generation. What we have formulated in the last
section predicts n tokens where n is the input sequence length. The change in
behavior when we use autoregressive generation is due to a modification of the
way we compute Attention. If you aren’t deeply familiar with Attention, this
would be a great time to refer to my other post on Attention (available on my
website).

Assume we have generated tokens 1 to (t − 1) in our sequence, and we are
now generating token t. Then, within the Attention block, we must calculate:
Qt = xtWQ; Kt = xtWK ; Vt = xtWV . For each Attention head, we see shape:
Ki ∈ RB×h×1×dk ; Vi ∈ RB×h×1×dv .

Assume that we have cached (saved) the values forK1:t−1, V1:t−1
3. Then, we

want to append the value for Kt, Vt to Kt−1, Vt−1 along the t dimension. Since
Kt−1, Vt−1 have been constructed this way, they have shapes RB×h×(t−1)×dk ,
R

B×h×(t−1)×dv respectively. After we append Kt, Vt, we now get:

K1:t ∈ RB×h×t×dk

KT
1:t ∈ RB×h×dk×t

V1:t ∈ RB×h×t×dv

Then, we calculate:

a =
QtK

T
1:t√

dk
∈ RB×h×1×t

We then apply a softmax over the t dimension: softmax(a, dim = −1). This
normalizes the sequence, and gives a score for how much the tokens produced
thus far are “contributing” to the next token.

Intuition Break: In “regular” Attention we apply the softmax over the “key”
dimension, so that each query has its own normalized score. In autoregressive
generation, normalizing along the t dimension does the same thing... it is nor-
malizing the effect of each previous token, which is the “question” affecting the
value of the new token.

After the softmax, we then multiply:

Output = aV1:t ∈ RB×h×1×dk

3As we will see: K1:t−1 ∈ RB×h×(t−1)×dk

7

https://evandramko.github.io

This concludes the changes to the attention mechanism in autoregressive
generation that allows the model to produce a single token at a time (notice the
“n” dimension is 1). We proceed to do the concatenation and projection of the
heads as usual, and then continue through the rest of the components/sub-layers
of the decoder block as usual.

6 Conclusion

That is it! We have covered the standard Transformer architecture from start to
finish. We describe both the encoder and decoder portions and all the calcula-
tions they use. Many variations of the architecture have emerged. Some target
efficiency, others add in a convolution operation, and many other “goals” are
considered. However, the base of all these architectures is the setup we covered.

8

	Introduction
	High-Level Architecture
	Data Embedding and Positional Encoding
	Encoder Block
	Input
	Self-Attention and Residual
	LayerNorm
	FFN/MLP and residual
	Recap

	Decoder
	Decoder Block
	Input Data
	Self-Attention + Residual + Norm
	Cross-Attention + Residual + Norm
	FFN
	Projection Into Vocabulary

	Teacher Forcing
	What Is Teacher Forcing?
	Issues and Solutions

	Autoregressive Generation

	Conclusion

